PMT

June 2004

GCE AS LEVEL

MARK SCHEME

MAXIMUM MARK: 50

SYLLABUS/COMPONENT: 9709/02

MATHEMATICS Paper 2 (Pure 2)

Page 1		1	Mark Scheme	Syllabus	Paper		
			A AND AS LEVEL – JUNE 2004	9709	2		
1	Use	M1					
	Obta	Obtain $\frac{x}{y} = \frac{\ln 5}{\ln 2}$ or equivalent					
	Obta		A1	3			
2	(i)	(i) Use the given iterative formula correctly at least ONCE with $x_1 = 3$					
		Shov	v sufficient iterations to justify its accuracy to 3 d.p.		A1	3	
	(ii)	State	e any suitable equation e.g. $x = \frac{1}{5} \left(4x + \frac{306}{x^4} \right)$		B1		
		Deriv	ve the given answer α (or x) = $\sqrt[5]{306}$		B1	2	
3	(i)	Subs	titute x = 3 and equate to zero		M1		
		Obta	in answer $\alpha = -1$		A1	2	
	(ii)	At ar	by stage, state that $x = 3$ is a solution IER: Attempt division by $(x=3)$ reaching a partial quotient of i	2x ² + kx	B1 M1		
			Obtain quadratic factor $2x^2 + 5x + 2$		A1		
		(Obtain solutions $x = -2$ by trial and error OR: Obtain solution $x = -2$ by trial and error		B1		
		[lf an unkn	attempt at the quadratic factor is made by inspection, the N own factor of $2x^2 + bx + c$ and an equation in b and/or c.]	11 is earned if	it reaches	4 an	
4	(i)	State	e answer R = 5		B1		
		Use Obta	trigonometric formulae to find α in answer α = 53.13°		M1 A1	3	
	(ii)	Carry	y out, or indicate need for, calculation of sin ⁻¹ (4.5/5) in answer 11.0°		M1 A1√		
		Carry	y out correct method for the second root e.g. $180^{\circ} - 64.16^{\circ}$	- 53.13°	M1 ∧1√	л	
		[lgno	re answers outside the given range.]			-	
	(iii)	State	e least value is 2		В1√	1	
5	(i)	State	derivative of the form ($e^{-x} \pm xe^{-x}$). Allow $xe^{x} \pm e^{x}$ (via quotie	nt rule}	M1		
		Obta Equa Obta	In correct derivative of $e^{-x} - xe^{-x}$ ate derivative to zero and solve for x in answer x = 1		M1 A1	4	
	(ii)	Shov Use	v or imply correct ordinates 0, 0.367879…, 0.27067… correct formula, or equivalent, with h = 1 and three ordinates	5	B1 M1		
		Obta	in answer 0.50 with no errors seen	-	A1	3	
	(iii)	Justi	fy statement that the rule gives an under-estimate		B1	1	

Page 2		2	Mark Scheme	Syllabus	Paper	
			A AND AS LEVEL – JUNE 2004	9709	2	
6	(i)	State	that $\frac{dx}{dt} = 2 + \frac{1}{t}$ or $\frac{dy}{dt} = 1 - \frac{4}{t^2}$, or equivalent		B1	
		Use	$\frac{dy}{dx} = \frac{dy}{dt} \div \frac{dx}{dt}$		M1	
		Obta	in the given answer		A1	3
	(ii)	Subs	stitute t = 1 in $\frac{dy}{dx}$ and both parametric equations		M1	
		Obta	in $\frac{dy}{dx} = -1$ and coordinates (2, 5)		A1	
		State	e equation of tangent in any correct horizontal form e.g. $x + y$	y = 7	A1√	3
	(iii)	Equa	the $\frac{dy}{dx}$ to zero and solve for t		M1	
		Obta Obta	in answer t = 2 in answer y = 4		A1 A1	
		Shov	v by any method (but <u>not </u> via $\displaystyle rac{d}{dt}(y')$) that this is a minimum	ı point	A1	4
7	(i)	Make Make Obta Use Obta	e relevant use of the $cos(A + B)$ formula e relevant use of cos2A and sin2A formulae in a correct expression in terms of cosA and sinA $sin^2A = 1 - cos^2A$ to obtain an expression in terms of cosA in given answer correctly		M1* M1* A1 M1(de A1	ep*) 5
	(ii)	Repl	ace integrand by $\frac{1}{4}\cos 3x + \frac{3}{4}\cos x$, or equivalent		B1	
		Integ	Integrate, obtaining $\frac{1}{12}$ sin3x + $\frac{3}{4}$ sinx, or equivalent		B1 +	B1√
		Use Obta	limits correctly in given anser		M1 A1	5