## GCE AS LEVEL

## MARK SCHEME

MAXIMUM MARK: 50

## SYLLABUS/COMPONENT: 9709/02

MATHEMATICS
Paper 2 (Pure 2)

| Page 1 | Mark Scheme | Syllabus | Paper |
| :---: | :---: | :---: | :---: |
|  | A AND AS LEVEL - JUNE 2004 | 9709 | 2 |

1 Use logarithms to linearise an equation
Obtain $\frac{x}{y}=\frac{\ln 5}{\ln 2}$ or equivalent
Obtain answer 2.32

2 (i) Use the given iterative formula correctly at least ONCE with $x_{1}=3 \quad$ M1
Obtain final answer 3.142
Show sufficient iterations to justify its accuracy to 3 d.p. A1
(ii) State any suitable equation e.g. $x=\frac{1}{5}\left(4 x+\frac{306}{x^{4}}\right)$

B1
Derive the given answer $\alpha$ (or $x)=\sqrt[5]{306}$
B1

3 (i) Substitute $x=3$ and equate to zero M1
Obtain answer $\alpha=-1 \quad$ A1
(ii) At any stage, state that $x=3$ is a solution B1

EITHER: Attempt division by $(x-3)$ reaching a partial quotient of $2 x^{2}+k x \quad$ M1
Obtain quadratic factor $2 x^{2}+5 x+2$ A1
Obtain solutions $x=-2$ and $x=-1 / 2$
A1
$\begin{array}{lr}\text { OR: Obtain solution } x=-2 \text { by trial and error } & \text { B1 }\end{array}$
Obtain solution $x=-1 / 2$ similarly
[If an attempt at the quadratic factor is made by inspection, the M1 is earned if it reaches an unknown factor of $2 x^{2}+b x+c$ and an equation in $b$ and/or $c$.]

4 (i) State answer $\mathrm{R}=5$
B1
Use trigonometric formulae to find $\alpha$
M1
Obtain answer $\alpha=53.13^{\circ}$ A1
(ii) Carry out, or indicate need for, calculation of $\sin ^{-1}(4.5 / 5) \quad$ M1

Obtain answer $11.0^{\circ}$
Carry out correct method for the second root e.g. $180^{\circ}-64.16^{\circ}-53.13^{\circ}$ A1 $\sqrt{ }$

Obtain answer $62.7^{\circ}$ and no others in the range
M1
[lgnore answers outside the given range.]
(iii) State least value is $2 \quad B 1 \sqrt{ }$

5 (i) State derivative of the form $\left(e^{-x} \pm x e^{-x}\right)$. Allow $x e^{x} \pm e^{x}$ \{via quotient rule \} M1
Obtain correct derivative of $e^{ \pm x}-x e^{-x}$
Equate derivative to zero and solve for $x$
Obtain answer $x=1$ A1
(ii) Show or imply correct ordinates $0,0.367879 \ldots, 0.27067 \ldots \quad$ B1

Use correct formula, or equivalent, with $\mathrm{h}=1$ and three ordinates M1
Obtain answer 0.50 with no errors seen A1
(iii) Justify statement that the rule gives an under-estimate

6 (i) State that $\frac{d x}{d t}=2+\frac{1}{t}$ or $\frac{d y}{d t}=1-\frac{4}{t^{2}}$, or equivalent

$$
\begin{equation*}
\text { Use } \frac{d y}{d x}=\frac{d y}{d t} \div \frac{d x}{d t} \tag{M1}
\end{equation*}
$$

Obtain the given answer A1
(ii) Substitute $\mathrm{t}=1$ in $\frac{d y}{d x}$ and both parametric equations M1

Obtain $\frac{d y}{d x}=-1$ and coordinates $(2,5)$
A1
State equation of tangent in any correct horizontal form e.g. $x+y=7$
A1 $\sqrt{ }$
(iii) Equate $\frac{d y}{d x}$ to zero and solve for t

Obtain answer $\mathrm{t}=2$
A1
Obtain answer $\mathrm{y}=4$ A1

Show by any method (but not via $\frac{d}{d t}\left(y^{\prime}\right)$ ) that this is a minimum point

7 (i) Make relevant use of the $\cos (A+B)$ formula M1*
Make relevant use of $\cos 2 A$ and $\sin 2 A$ formulae M1*
Obtain a correct expression in terms of cosA and $\sin A$
Use $\sin ^{2} A=1-\cos ^{2} A$ to obtain an expression in terms of $\cos A$ A1

Obtain given answer correctly
A1 5
(ii) Replace integrand by $\frac{1}{4} \cos 3 x+\frac{3}{4} \cos x$, or equivalent B1

Integrate, obtaining $\frac{1}{12} \sin 3 x+\frac{3}{4} \sin x$, or equivalent
Use limits correctly
M1
Obtain given anser
A1

